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SUMMARY: (10 pt) 

This study proposes a series of machine learning (ML) algorithms for thunderstorm identification utilizing the 

anemometric records collected at 15 measurement sites from 2012 to 2020. The training dataset of these ML 

algorithms comprised 103 thunderstorm (TS) outflow events and an equivalent number of non-thunderstorm (NTS) 

events. In particular, 86 TS-like NTS events such as gust fronts, which can be easily misidentified as TS events by 

conventional gust factor-based approaches, were deliberately selected for the training data. The ML algorithms were 

developed using the support-vector machine technique and their performances were evaluated by k-fold cross 

validation. Results show that the ML algorithms had a significantly higher accuracy for TS identification than the 

conventional approaches, and this is attributed mainly to their superior abilities to distinguish the TS events from TS-

like NTS events. This study aims to investigate the feasibility of using ML as an effective tool to identify the TS 

events from anemometric records, and so as to further the application of ML in wind engineering studies. 
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INTRODUCTION 

Wind loads for structural designs are typically obtained by analyzing historical anemometric 

records, especially those of extreme wind events such as thunderstorm (TS) outflows. Since the 

TS outflows are featured with unique wind profiles and turbulence characteristics that are different 

from other extreme events at synoptic scales, it is required to conduct separate analyses on TS 

outflows and non-thunderstorm (NTS) high wind events (Gomes and Vickery, 1978). Efforts have 

been devoted to identify TS outflows from anemometric records over the past few decades (e.g., 

Twisdale and Vickery, 1992; Lombardo et al., 2009). Notably, literature pointed out that a NTS 

event may be misidentified as a TS event if it exhibits a similar time-varying trend of wind speed 

(i.e., a rapid increase and decrease in speed within a short period of time), resulting in a high false 

positive rate of the identification results. For instance, Kasperski (2002) noted that the gust fronts, 

as a type of these TS-like NTS events, can hardly be separated from TS outflows. To this end, 

several approaches based on the gust factor (GF), a conventional wind parameter that describes 

the intensity of wind speed variations, were proposed by previous studies (e.g., De Gaetano et al., 

2014), whereas the TS identification performances of these approaches still needs to be further 

validated. In recent years, studies in the meteorology field (e.g., Zhang et al., 2016) developed a 

few machine learning (ML) algorithms to identify TS events based on a variety of meteorological 

data (satellite, radar, lightning, precipitation, etc.). However, the ML algorithms proposed based 



on anemometric data, which meets the specific need for wind-resistant structural designs (e.g., 

Arul et al., 2022), are still lacking. Hence, this study developed a series of ML algorithms for TS 

identification based on anemometric records; a large number of TS-like NTS events were 

deliberately selected for the training of ML algorithms to enhance their abilities to accurately 

distinguish TS events from NTS events. The paper is structured as follows: Section 1 introduces 

the wind monitoring network that collected the anemometric records and the selected records of 

TS and NTS events; Section 2 presents the development and identification performances of the 

ML algorithms, followed by the conclusions. 

 

1. ANEMOMETRIC RECORDS 

1.1. Wind monitoring network 

Established by the University of Genoa, the wind monitoring network started to monitor the wind 

events in the TS-prone areas of the High Tyrrhenian Sea since 2012 (Solari et al., 2012; Repetto 

et al., 2018). This study examined over 800,000 hours of wind records collected at 15 anemometer 

sites, as shown in Figure 1(a), from 2012 to 2020. Each site is instrumented with a bi- or tri-axial 

ultrasonic anemometer that can measure the wind at a speed of up to 45 m/s, which is adequate for 

the monitoring of natural extreme wind events such as thunderstorms. The sampling frequency is 

set as 10 Hz for the purpose of capturing the turbulence characteristics of wind. To measure the 

undisturbed winds that are not affected by adjacent obstacles, the anemometers are all mounted 

atop tall structures (e.g., towers and poles) at least 10 m above ground level. 
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Figure 1. Anemometric database: (a) Locations of anemometer sites; (b) examples of TS and TS-like NTS events 

 

1.2. Thunderstorm and non-thunderstorm records 
From the anemometric database of the wind monitoring platform, this study extracted 103 wind 
speed and direction record segments of TS outflows and an equivalent number of record segments 
of NTS events. Each of these 206 record segments is one hour in length and centered at the time 
instance corresponding to the maximum instantaneous wind speed. To ensure the classification 
accuracy of the selected TS and NTS records, lightning data and infrared satellite images collected 
during the same periods were carefully examined to detect the existence of lightning activities and 
severe convections in the vicinity of measurement sites for all TS events (and the nonexistence of 
these phenomena for NTS events) (Burlando et al. 2018). Notably, with the aim to investigate the 
difference between TS events and TS-like NTS events such as gust fronts, this study deliberately 
selected 86 NTS events that were classified as TS events by a conventional GF-based approach 
(De Gaetano et al., 2014). Figure 1(b) plots the 30-s mean wind speed time histories of a typical 



TS event and a TS-like NTS event, showing that the TS-like NTS event demonstrates a very similar 
time-varying trend of wind speed as the TS event.  
 

2. MACHINE LEARNING IDENTIFICATION 

2.1. Feature selection 

To develop ML algorithms, the 206 selected anemometric record segments were utilized as the 

training dataset. It is a widely adopted approach to classify the wind events into TS and NTS 

categories based on specific wind parameters, and this approach is also followed by the 

development of ML classification algorithms, in which context the wind parameters and the event 

categories are referred to as features and labels, respectively. This study obtained a total number 

of 207 features of the training dataset, including the mean and extreme values of wind speed, 

turbulence intensity, gust factor, kurtosis and skewness of wind speed, turbulence integral length 

scale, the variation amplitude of wind direction, etc. To remove the features that are redundant or 

irrelevant to the labels (i.e., dimensionality reduction), this study conducted neighborhood 

component analysis (Goldberger, et al., 2004) and the learned feature weights, which quantify the 

relevancies of features (weights of irrelevant features are zero), are plotted in Figure 2(a). By 

setting a threshold of 1.2 for the calculated feature weights as presented in, four features with the 

highest weights were selected for the development of ML classification algorithms. 
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Figure 2. Development of ML algorithms: (a) Feature weights calculated by neighborhood component analysis; (b) 

Receiver operating characteristic curves and optimal operating points of ML algorithms 

 

2.2. Identification performances 

Based on the training dataset introduced above and the four selected features, this study developed 

six ML classification algorithms using the linear support-vector machine (SVM), first proposed 

by Vapnik (1963), and non-linear SVMs with polynomial and Gaussian kernels. Figure 2(b) 

illustrates the optimal operating points on the receiver operating characteristic curves of these 

SVM-based ML algorithms. Table 1 summarizes the identification performances of the trained 

ML algorithms, obtained by k-fold cross validation with k = 5, and a conventional GF-based TS 

identification approach (De Gaetano et al., 2014). Results show that the identification accuracies 

of the ML algorithms, ranging from 72.8% to 82.0%, were significantly higher than that of the 

GF-based approach, 55.3%. Such significant improvement in accuracy is mainly because the true 

negative rates of the ML algorithms reached 68.9% to 85.4%, which were much higher than that 

of the GF-based approach, 16.5%. These high true negative rates indicate that the ML algorithms, 

comparing with the GF-based approach, can distinguish the TS events from the TS-like NTS 

events at a much higher accuracy. 



Table 1. Identification performances of SVM ML algorithms and GF-BASED approach. 

Identification approach ACC (%) TPR (%) TNR (%) PPV (%) NPV (%) 

Linear SVM 82.0 81.6 82.5 82.4 81.7 
Quadratic SVM 80.1 85.4 74.8 77.2 83.7 
Cubic SVM 72.8 76.7 68.9 71.2 74.7 
Fine Gaussian SVM 74.3 63.1 85.4 81.3 69.8 
Medium Gaussian SVM 78.2 78.6 77.7 77.9 78.4 
Coarse Gaussian SVM 81.6 81.6 81.6 81.6 81.6 
GF-based 55.3 94.2 16.5 53.0 73.9 

Note: ACC – Accuracy; TPR – True positive rate; TNR – True negative rate; PPV – Positive predictive value; NPV 

– Negative predictive value. 

 

CONCLUSIONS 

Based on the anemometric dataset that comprises 103 TS outflow events and an equivalent number 

of selected NTS events (including 86 TS-like events), this study developed a series of ML 

algorithms using the SVM technique for TS identification and their performances were evaluated 

using k-fold cross validation. Results showed that the ML algorithm with the best performance 

identified the TS events at a satisfying accuracy of 82.0%. In particular, comparing with the 

conventional gust factor-based approaches, the ML algorithms were able to distinguish the TS 

events from the TS-like NTS events at a significantly higher accuracy. 
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